
6
Prototype application

As a constituent part of this work, a prototype application which demon-

strates the chosen approach to the manipulation of virtual 3D objects, has been

developed.

6.1
Requirements

The basic requirements for the prototype application were as follows:

– the application must run at interactive rates.

– the application must implement the following basic set of manipulation

operations: SELECT, DESELECT, TRANSLATE, ROTATE, SCALE.

– the hardware part must be based on commercial, off-the-shelf compo-

nents (standard PC, inexpensive low-resolution web cameras).

– the system shall use passive stereo vision in order to reconstruct 3D

position of the hand.

– the system shall use the 3 d.o.f. hand model (for each hand, therefore

effectively creating a 6 d.o.f. input device), as described in Section 2.3.1

on page 23.

6.2
Constraints, assumptions and restrictions

The constraints on the system were as follows: the workplace (Figure 6.1)

consists of a standard office cubicle equipped with a personal computer with

two cameras (i.e. a stereo pair) connected. Cameras are fixed at the top of

the cubicle and are directed down, at a certain angle, relative to the surface

of the desktop. A stereo pair of cameras enables us, due to the phenomenon

called stereo disparity, to estimate 3D positions of various hand features, thus

offering us a way to integrate our hands into the VE.

Accordingly, we define the workspace as the intersection of the two visual

cones defined by the respective cameras’ field of view — the user must move his

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 59

Figure 6.1: The user’s workplace

hands in this working space, in order for the system to register hand movements

and gestures. If a hand exits the workspace, the system stops tracking the hand.

Also:

– Cameras are fixed, oriented downwards and towards the desktop surface.

and the background (desktop surface) does not change in time.

– Palms must always be approximately co-planar with the desk surface, in

order for the system to successfully detect hand postures.

– Illumination cannot be too weak, because in this case the pixel segmen-

tation process, based on human skin color, would fail.

– The hands must move approximately in the far-distance field of the

cameras, because if they move too near the cameras, the perspective

distortion gets large and 3D triangulation fails.

6.3
Hand postures defined

Figure 6.2 depicts the three hand postures we use in our application.

Note that the image depicts the right hand only, but both the left and the

right hand can assume these postures. (The left hand assumes postures which

are simply mirrored relative to the vertical axis.) Also please note that the hand

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 60

postures shown in the image are inclined at an angle, which approximates the

natural hand inclination when it is being tracked in the workspace. We now

define the following hand postures (also called hand states), from which all the

manipulation operations are being defined, as follows:

1. HAND POSTURE OPEN — flat palm with all fingers spread apart

2. HAND POSTURE POINTING — all fingers closed, except the index finger

3. HAND POSTURE FIST — all fingers closed

Figure 6.2: Three hand postures utilized by the system: HAND POSTURE OPEN

(left), HAND POSTURE POINTING (middle) and HAND POSTURE FIST (right)

As a matter of convenience, we defined one more posture,

HAND POSTURE UNKNOWN, which designates any hand posture that is not

recognized by the system.

The criteria used when choosing postures and the mapping between

postures and manipulation operations were:

1. the “naturalness” of the posture, that is, the similarity between similar

hand movements and gestures when manipulating real, physical objects,

and

2. sufficient degree of inter-posture “otherness”, in other words the appear-

ances of postures had to be sufficiently different in order to achieve bet-

ter visual separability of postures, thus allowing better detection perfor-

mance.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 61

6.4
Manipulation operations implemented

This section gives the list of implemented hand gestures for the manip-

ulation of 3D virtual objects.

Using the hand postures defined in Section 6.3, we now define direct 3D

manipulation operations. Manipulation operations can be either one-handed or

two-handed:

1. OP SELECT (one-handed) — selects an object. Based on the posture

HAND POSTURE POINTING.

2. OP DESELECT (one-handed) — deselects an object. Based on the posture

HAND POSTURE POINTING.

3. OP TRANSLATE (one-handed) — translates (moves) selected objects.

Based on the posture HAND POSTURE FIST.

4. OP ROTATE (two-handed) — Rotates selected object. Based on two

HAND POSTURE POINTING hand postures.

5. OP SCALE (two-handed) — scales objects. Based on two

HAND POSTURE FIST hand postures.

Therefore, we have two two-handed spatial operations: OP ROTATE and

OP SCALE — these use both hands, the left and the right one, at the same

time. The remaining three spatial operations (OP SELECT, OP DESELECT and

OP TRANSLATE) are one-handed — must be performed by just one hand, either

just by the left or just by the right hand. Each of these operations will now be

described in detail.

6.4.1
Selecting and deselecting objects

Operation OP SELECT selects an object in the scene, while operation

OP DESELECT deselects an (already selected) 3D object. In order to (de)select a

3D object, the user extends the index finger of one and exactly one hand (thus

changing that hand’s state into HAND POSTURE POINTING), and moves the hand

into the object. (We emphasized “one and exactly one” because two tracked

hands which are in the HAND POSTURE POINTING state perform the operation

OP ROTATE, see Section 6.4.3.) As soon as the application detects that the

tracked hand’s centroid entered the interior of the object, while the hand is

in state HAND POSTURE POINTING, the objects gets (de)selected. The user can

now move her hand out of the object; the object stays (de)selected.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 62

In WIMP terms, operation OP SELECT is equivalent to moving the mouse

pointer onto a screen object (for example, onto an icon) and then pressing

the mouse button, thus selecting the icon. Similarly, operation OP DESELECT

is equivalent to moving the mouse pointer onto an already selected screen

object (for example, onto an already selected icon) and then pressing the mouse

button, which deselects the icon.

6.4.2
Translating objects

Operation OP TRANSLATE translates (moves) all the currently selected ob-

jects (Figure 6.3). For this to work, one and exactly one hand must be in the

HAND POSTURE FIST state. (We say “exactly one” because if both tracked

hands are in the HAND POSTURE FIST state, we will be performing the

OP SCALE operation, see Section 6.4.4.)

The operation initiates at the moment the user changes the state of

one (and exactly one) of her hands into HAND POSTURE FIST. The position of

that hand’s centroid is then the starting point of the translation vector. User

moves the hand about, and the selected objects move along too. When the

user decides the translation is just right, she changes the hand’s state into

HAND POSTURE OPEN thus terminating the OP TRANSLATE operation.

Figure 6.3: OP TRANSLATE operation, based on one HAND POSTURE FIST posture

6.4.3
Rotating objects

Operation OP ROTATE rotates all the currently selected objects (Figure

6.4). It is a bimanual-asymmetric operation (see Section 3.2 on page 28). At the

moment when the application detects that both hands have their index finger

extended (thus entering into the HAND POSTURE POINTING state), the hands’

respective positions (A for the left, and B for the right hand) get memorized

and defined as the vector �u = B − A. If subsequent positions of both the left

and the right hand are C and D respectively, and if define �v = D − C, then

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 63

the current rotation axis is the vectorial cross-product �u× �v, and the rotation

angle is equal to the angle between vectors �u and �v.

The user can now move her hands about, and the selected objects

rotate around their (local) origins in real time. When the user decides to

stop the rotation, she changes both hands’ state into HAND POSTURE OPEN thus

terminating the OP ROTATE operation.

Figure 6.4: The two-handed OP ROTATE operation is based on two
HAND POSTURE POINTING postures. An example of a CCW rotation shown

6.4.4
Scaling objects

Operation OP SCALE scales all the currently selected objects (Figure 6.5).

It is a bimanual-symmetric operation (see Section 3.2 on page 28). At the

moment both hands enter into the HAND POSTURE FIST state, the locations

of both hands get memorized and defined as two points A, B. If subsequent

positions of both the left and the right hand are C and D respectively, then the

current scaling factor is defined simply as the ratio |C−D|
|A−B| , which is a ratio of

lengths: first length defined by points A and B, and the second length defined

by points C and D.

Therefore, during the scaling operation, the user can move her hands,

and the selected objects scale in real-time around their (local) origins, in

the directions defined by their local coordinate systems. When the user

decides to stop the scaling, she changes one (or both) hand’s state into

HAND POSTURE OPEN thus terminating the OP SCALE operation.

f

6.5
Control flow

Before anything, the stereo rig must be calibrated i.e. its parameters (in-

trinsic and extrinsic) determined. Only by knowing these camera parameters,

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 64

Figure 6.5: The two-handed OP SCALE operation is based on two
HAND POSTURE FIST postures

can CV techniques (specifically, the triangulation technique adopted) recon-

struct 3D position of our hands in the workspace.

The set K of intrinsic parameters for a single camera includes two focal

lengths (fx, fy), the principal point (ox, oy) and four distortion parameters

(k1, k2, k3, k4):

K = {(fx, fy), (ox, oy), (k1, k2, k3, k4)}

We determined these intrinsic parameters using the Zhang’s method [19]. For

the calibration pattern we used a 8 × 7 checkerboard pattern.

Having determined two sets KL, KR of intrinsic parameters (for the

left and right camera), we can proceed to determining extrinsic parameters

(orientation and distance of a camera relative to the pattern). For this, we

now fix the 8 × 7 checkerboard on the desk surface, and orient cameras so

that they both have the pattern in their field of view.

Knowing both cameras’ intrinsic parameters, we can now compute the

extrinsic parameters (rotation matrices RL and RR, and translation vectors �TL

and �TR) of both cameras, relative to the pattern we’ve just fixed on the desk’s

surface. The extrinsic parameters R and �T of the stereo rig are then simply

R = RRRτ
L

�T = �TL − Rτ �TR

These parameters R and �T now completely determine the geometry of our

stereo rig and allow us to perform absolute, Euclidean 3D reconstruction of

the hand’s 3D position in the workspace shown in Figure 6.1.

Another important concept is the fundamental matrix F , a 3× 3 matrix

of rank 2, which allows us to perform 3D reconstruction using the triangulation

method by see Hartley and Sturm [20]. We compute F from a set of N

corresponding image points {�xi ↔ �x′
i | i = 1, . . . , N}, whereby we determine

these image points as defining points of the squares of our calibration pattern

(a 8 × 7 checkerboard, which can be seen for example in Figure 6.3 on page

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 65

62), detected in both the left and right image used for stereo rig calibration.

6.5.1
Hand detection

With the stereo rig calibrated, we can now proceed to detecting hands

in the stereo input video stream. Here detection serves for the purpose of

initiating the process of tracking, described in Section 6.5.3 below.

For this end, we define two “detection areas” (left and right), one for

each of both hands in the application client area. By definition, if a hand is

not being tracked, its “detection area” gets shown on the application screen as

a red rectangle, at the predetermined location and with a predetermined size.

If the user now moves her hand into the corresponding detection area, and puts

her hand into the predefined posture (HAND POSTURE OPEN has been chosen as

the tracking initialization posture), the system will detect the hand, output

the corresponding bounding rectangle and start tracking the hand within this

bounding rectangle. At this moment, the red rectangle disappears and is being

replaced by a green rectangle, signifying that that particular hand is currently

being tracked by the system.

For detection, the Viola-Jones method (see Appendix B on page 109) has

been chosen as the detection method, due to the following properties:

– invariance with regard to background

– insensitivity to changes in illumination/lighting

– invariance with regard to person

– invariance with regard to camera

– invariance with regard to scale

– fast execution.

It is a method which requires training & validation using four sets of samples:

– Two positive sample sets:

– Positive training set A — for this set we moved our right

hand in posture HAND POSTURE OPEN randomly in the workspace,

approximately under the natural inclination (see Figure 6.2 left),

under our lab’s standard lighting conditions, and took a number

(in the range of hundreds) photos containing the hand. Note that

“approximately natural inclination” indicates that we included a

number of shots of hands rotated to a degree (±15◦) relative to all

three axes, in order to increase the robustness of the classifier.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 66

– Positive validation set B — under the same conditions as above,

we took additional photos (few hundreds) to be used as validation

images after the training is complete.

– Two negative sample sets:

– Negative training set C — for the negatives, we took a num-

ber (> 1000) of images that do not contain hands in posture

HAND POSTURE OPEN, from two public domain image collections

(burningwell.org, easystockphotos.com).

– Negative validation set D — we took additional images as a

negative validation set (a couple of hundreds), from the same public

domain image collections.

We then used OpenCV facilities to train boosted cascades of weak classifiers

in the following way:

1. we manually marked bounding rectangles for hands in the positive

training samples, and saved the list of bounding rectangles in a file F .

2. before training, we set the required false positives threshold to be 10−6.

3. we ran the training tool on file F and on the two training sets, the positive

A and negative C. After the training has completed, we obtained a 15-

stage classifier for posture HAND POSTURE OPEN with detection rate of

approximately 98%.

4. we successfully tested the classifier using sets B and D.

5. we built the trained classifier into our prototype application. An OpenCV

function loads the classifier; other function detects hands in posture

HAND POSTURE OPEN in the current video frame. Note that we trained the

classifier with our right hand; for the left hand, before the recognition

stage we mirror the left side of the application area in order to be able

to use the same classifier to recognize the left hand.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 67

6.5.2
Hand segmentation based on human skin color

The hand detection method described above not only gives an answer

whether there is or isn’t a hand in an image, but also the bounding rectangle of

the image region containing the hand. Considering this region of interest (ROI)

only, we now make use of the characteristic hue of human skin to determine

the pixels belonging to a hand. The reason we perform this segmentation is to

increase the hand tracking robustness — see Section 6.5.3.

To this end, we used color histograms — both in the detection stage (us-

ing HSV color space), and for the learning (using normalized RGB histogram)

of the color of the hand that has just been detected, i.e. we perform color

learning immediately after the hand has been detected (pre-tracking stage).

6.5.3
Hand tracking

After a hand has been detected in an image, and hand pixels color-

segmented using the properties of the human skin, we start tracking it. For

tracking the method proposed by Kölsch in [35] has been chosen, which in turn

is based on Kanade-Lucas-Tomasi (KLT) features (see Appendix C on page

116), also called “good features to track”. KLT features are based on the early

work done in [23], and then developed further in [24] and [25]. To increase

robustness, the “Flocks of Features” approach to tracking by Kölsch adds two

additional properties to simple KLT tracking:

– tracked KLT features never exceed a predetermined maximum distance

from the median of all tracked KLT features, and

– tracked KLT features can never be closer to each other than a predeter-

mined minimum distance.

Differently from the application showcased by Kölsch in [35], which is able to

track only one hand using just one (monocular) camera, our application 1)

implements four fully independent object trackers (four due to each camera

tracking up to two hands), and 2) uses stereo disparity for 3D reconstruction

of the hand’s position in 3D workspace.

We now clarify what is meant by “tracking a hand”. After a hand has

been detected as explained in Section 6.5.1 in both cameras’ views, and hand

pixels color-segmented, up to N (for example, 100) KLT features are being

collocated on the hand (i.e. on the blob defined by the detected hand’s pixels).

By averaging in each frame the 2D positions of all of these N features, we

obtain a mean (average) position P of the hand being tracked. Therefore the

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 68

2D position P is the output of the tracking routine. Since we can have up to

two active (tracked) hands, and each hand gives rise to one triangulated 3D

position, we can have up to 2 × 3 = 6 d.o.f. at our disposal to implement

spatial manipulation operations.

3D reconstruction (triangulation)

Finally, with the two corresponding 2D points u, u′ tracked (point u in

the left camera view, point u′ it the right camera view, we can compute, in

real time, the global 3D position �x = (x, y, z) of a hand (either the left or

the right hand) in the workspace. For this we use the triangulation method

by Hartley and Sturm [20], a fast, non-iterative method that always finds

the global optimum. Formulated as a least-squares minimization problem, the

method computes image points û, û′ such that

d(u, û)2 + d(u′, û′)2 → min, û′τFû = 0

where d(∗, ∗) is the Euclidean distance function and F the fundamental matrix

of the stereo rig (see Appendix D for more on the Hartley-Sturm triangulation

method). Assuming Gaussian error distribution (tracking of u, u′ is noisy

because of digitization errors), the points û, û′ are the most likely values for

true image correspondences. Since the corresponding rays through û, û′ meet

exactly in 3D space, we can now find easily �x (the global position of the hand in

the workspace) using any other triangulation method, for example Mid-point

triangulation method described in Section 5.4.1 on page 46.

6.5.4
Hand posture recognition

The last step in the CV pipeline is the hand posture recognition, which

enables us to implement a simple static gesture recognition. For hand posture

recognition, we again use the Viola-Jones method. For this we repeated

the training process explained in Section 6.5.1, only with positive samples

containing other postures besides HAND POSTURE OPEN.

6.5.5
Activity diagram

A detailed integrated view (an activity/control flow diagram) of all the

CV-related processed described in this section can be seen in Figure 6.6.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 69

Figure 6.6: Detailed activity diagram for detection, tracking and posture
recognition

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 70

6.6
Hardware and software configuration

All experiments were done on a personal computer equipped with an 2.66

GHz dual core processor, 2 GB RAM, and two web cameras connected to two

dedicated USB 2.0 ports grabbing 30 color frames per second at the resolution

of 320 × 240 pixels.

The software application was developed utilizing the C++ language,

together with the following libraries:

– OpenGL for low-level 3D graphics rendering

– GLUT for windows handling

– OpenCV computer vision library for low-level image processing and

extended Viola-Jones detection method (see Appendix B on page 109)

– A number of libraries were consulted and used to implement hand

tracking based on KLT features (see Appendix C on page 116). These

include:

– KLT implementation by Jean-Yves Bouguet, found in the OpenCV

library

– KLT implementation by Stan Birchfield at the Clemson University

(www.ces.clemson.edu/˜stb/klt/)

– KLT implementation by Mathias Kölsch found in the HandVu

library (www.movesinstitute.org/˜kolsch/HandVu/HandVu.html)

– GPU-based KLT implementation by Sudipta Sinha

at the University of North Carolina at Chapel Hill

(cs.unc.edu/˜ssinha/Research/GPU KLT/)

6.7
Tests and results

We’ll now assess qualitatively estimation accuracy for a hand’s position.

Since the difference between hand’s estimated position and ground truth is

difficult to measure for an uninstrumented hand, we give here the figures

demonstrating the hand’s trajectory in space, from which we can deduce

visually the amount of noise present in estimated positions. We trace three

simple figures in space with the right hand: a line, a circle and a figure “eight”

(Figure 6.7).

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 71

Figure 6.7: 3D plot of
estimated hand po-
sitions, obtained by
tracing a line, a circle
and an “eight” in the
workspace

6.7.1
Frames per second rates

Using the system described, we achieved tracking-related latencies from

7 to 30ms with just one hand tracked (i.e. with two trackers active), and up

to 60ms with both hands tracked (i.e. with all four trackers active). Taking

the application as a whole, i.e. taking all the other system processes into

consideration, we achieved frame rates from 8 to 15 fps.

6.7.2
Detection performance

In this section the results on detection performance, depending on various

training configurations, are presented. Viola-Jones detectors (see Appendix B

on page 109) for all three hand postures were trained with various training

parameters, and here their performance, relative to these parameters, will be

compared.

The parameters which define detector performance are:

– Number M of positives (i.e. images that contain at least one instance

of the hand in the targeted hand posture)

– Number N of negatives (i.e. images that don’t contain any instance

of the hand in the targeted hand posture)

– Number K of stages in the finalized cascaded detector

– Minimum hit rate α (for each stage). Note that the overall hit rate

for the finalized detector is then αK .

– Maximum false alarm rate β (for each stage). Note that the overall

maximum false rate for the finalized detector is then βK .

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 72

The performance parameters being measured (relative to some set con-

taining test images — each of the three postures has its own such set) are:

– Total hits Θ — how many positive instances in the images from the

test set were correctly detected.

– Total misses Γ — how many positive instances in the images from the

test set weren’t detected.

– False hits Ω — how many hits were reported, although there wasn’t

any positive instance (in the target posture) in the image from the test

set, for all images in the set.

Note that by “detector performance” the manner of functioning in terms

of hit rates only is presupposed. In other words, the speed of detection is not

measured in this work, since in all cases it’s good enough (in the range from

10 to 30 ms) to process all frames at the grabbing frame rates.

Figure 6.8: A hit (left) and a hit and false hit (right). Posture
HAND POSTURE OPEN

Figure 6.9: A hit and multiple false hits (left), and a miss (right). Posture
HAND POSTURE OPEN

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 73

Training times for detectors trained ranged from a couple of hours to

several days, using a current personal computer (2.4 GHz dual-core processor)

and with 1 GB RAM allocated to the training process.

Detector performance for HAND POSTURE OPEN

Here we compare the performance of various detectors for the hand

posture HAND POSTURE OPEN. To measure the performance, a set M ′ of 177

images has been created, some of which contained snapshots of the right hand

in the hand posture HAND POSTURE OPEN, taken at various heights (y-axis)

from the desk surface, and at various horizontal (x-axis) and depth (z-axis)

locations.

M N K α β
index positives negatives number of min. max. false

stages hit rate alarm rate

1 516 1000 8 0.995 0.5
2 545 1551 3 0.995 0.5
3 545 1551 3 0.995 0.4

Table 6.1: Training sets for HAND POSTURE OPEN

Please note training set #3 which has the same parameters as the set

#2 however with maximum false alarm set at 0.4.

M ′ Θ Γ Ω
index test set total total false

size hits misses hits

1 177 97 (54.80%) 80 (45.20%) 4 (2.26%)
2 177 154 (87.01%) 23 (12.99%) 813 (459.32%)
3 177 146 (82.46%) 31 (17.54%) 741 (418.64%)

Table 6.2: Detector performance for HAND POSTURE OPEN

We can see that the training set #1 achieved the highest number of stages

and consequently the lowest false hit rate. Sets #2 and #3 achieved required

leaf false alarm rate very early in the training phase, which however leads to

unacceptably high false hit rates.

Detector performance for HAND POSTURE POINTING

Here we compare performance of various detectors for the hand posture

HAND POSTURE POINTING. To measure the performance, a set M ′ of 162 (posi-

tive) images has been created some of which contained snapshots of the right

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 74

hand in the hand posture HAND POSTURE POINTING, taken at various heights

(y-axis) from the desk surface, and at various horizontal (x-axis) and depth

(z-axis) locations.

M N K α β
index positives negatives number of min. max. false

stages hit rate alarm rate

1 233 1000 7 0.995 0.5
2 233 1000 10 0.995 0.3

Table 6.3: Training sets for HAND POSTURE POINTING

Training set #2 has the same parameters as the set #2 however with

maximum false alarm set at 0.3.

M ′ Θ Γ Ω
index test set total total false

size hits misses hits

1 162 115 (70.99%) 47 (29.01%) 1 (0.62%)
2 162 103 (63.58%) 59 (36.42%) 1 (0.62%)

Table 6.4: Detector performance for HAND POSTURE POINTING

As we can see, training sets #1 and #2 have the same false hit rates,

however, for larger test sets, we can expect the set #2 to outperform #1 due

to greater number of stages.

Detector performance for HAND POSTURE FIST

Here we compare performance of various detectors for the hand posture

HAND POSTURE FIST. To measure the performance, a set M ′ of 191 (positive)

images has been created some of which contained snapshots of the right hand

in the hand posture HAND POSTURE FIST, taken at various heights (y-axis)

from the desk surface, and at various horizontal (x-axis) and depth (z-axis)

locations.

As we can see, training set #2 has the same parameters as the set #1

however with maximum false alarm set at 0.3. Training set #4 has the same

parameters as the set #1 however with 1053 negatives instead of 1000, and

only four stages. Also, training sets #3 and #4 have an increased number

of positives (453). Sets #3 and #4 achieved required leaf false alarm rate

very early in the training phase, which led to low number of stages for these

detectors.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 75

M N K α β
index positives negatives number of min. max. false

stages hit rate alarm rate

1 222 1000 10 0.995 0.5
2 222 1000 10 0.995 0.3
3 453 1000 5 0.995 0.5
4 453 1053 4 0.995 0.5

Table 6.5: Training sets for HAND POSTURE FIST

M ′ Θ Γ Ω
index test set total total false

size hits misses hits

1 191 91 (47.64%) 100 (52.36%) 2 (1.05%)
2 191 78 (40.84%) 113 (59.16%) 3 (1.57%)
3 191 55 (28.80%) 136 (71.20%) 312 (163.35%)
4 191 63 (32.98%) 128 (67.02%) 406 (212.57%)

Table 6.6: Detector performance for HAND POSTURE FIST

We can see that the training set #2 has higher false hit rates than the

set #1, however this is probably due to statistical fluctuation. For larger test

sets, we can expect the set #2 to outperform #1 due to lower maximum false

alarm rate.

An example session while working with the application

In this section, several snapshots of the video taken when working with

the prototype application, are shown.

The scene consists of just two simple objects (wire-frame spheres) to be

manipulated; by default, the right sphere is already selected, which is indicated

by its red color. The left camera’s image (of the stereo camera pair) is being

rendered as a textured polygon at the bottom of the working volume, depicted

here as a simple box delineated by a couple of gray lines.

Finally, the top left corner contains a picture-in-picture movie of hands,

taken in real time with a third camera, in order to give a better overview of

gestures and operations being performed.

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 76

Figure 6.10: The application upon startup. No hand has been detected yet,
therefore hands are not being tracked, thus no static gesture is being recog-
nized, thus no manipulation operation is being performed

Figure 6.11: Application started to track hands, after both of them assumed
posture HAND POSTURE OPEN. We can see that the application placed two flocks
of KLT features on both hands

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 77

Figure 6.12: The right hand assumed posture HAND POSTURE POINTING, there-
fore the application started performing the operation OP SELECT using the
right hand

Figure 6.13: The right hand assumed posture HAND POSTURE FIST, therefore
the application started performing the operation OP TRANSLATE using the right
hand

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 78

Figure 6.14: Both hands assumed posture HAND POSTURE OPEN, upon which the
previous manipulation operation has been cancelled

Figure 6.15: The left hand assumed posture HAND POSTURE POINTING, therefore
the application started performing the operation OP SELECT using the left hand

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 79

Figure 6.16: The left hand assumed posture HAND POSTURE FIST, therefore the
application started performing the operation OP TRANSLATE using the left hand

Figure 6.17: Both hands assumed posture HAND POSTURE FIST, therefore the
application started performing the operation OP SCALE using both hands

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

CHAPTER 6. PROTOTYPE APPLICATION 80

Figure 6.18: Another example of OP SCALE

Figure 6.19: Both hands assumed posture HAND POSTURE POINTING, therefore
the application started performing the operation OP ROTATE using both hands

DBD
PUC-Rio - Certificação Digital Nº 0611939/CA

